With recent developments in Social Computing, Natural Language Processing and Clinical Psychology, the social NLP research community addresses the challenge of automation in mental illness on social media. A recent extension to the problem of multi-class classification of mental health issues is to identify the cause behind the user's intention. However, multi-class causal categorization for mental health issues on social media has a major challenge of wrong prediction due to the overlapping problem of causal explanations. There are two possible mitigation techniques to solve this problem: (i) Inconsistency among causal explanations/ inappropriate human-annotated inferences in the dataset, (ii) in-depth analysis of arguments and stances in self-reported text using discourse analysis. In this research work, we hypothesise that if there exists the inconsistency among F1 scores of different classes, there must be inconsistency among corresponding causal explanations as well. In this task, we fine tune the classifiers and find explanations for multi-class causal categorization of mental illness on social media with LIME and Integrated Gradient (IG) methods. We test our methods with CAMS dataset and validate with annotated interpretations. A key contribution of this research work is to find the reason behind inconsistency in accuracy of multi-class causal categorization. The effectiveness of our methods is evident with the results obtained having category-wise average scores of $81.29 \%$ and $0.906$ using cosine similarity and word mover's distance, respectively.
translated by 谷歌翻译
这项研究工作是关于语音识别的最新发展。在这项研究工作中,在存在不同的比特速率和不同噪声水平的情况下对孤立的数字识别的分析。这项研究工作是使用Audacity和HTK工具包进行的。隐藏的马尔可夫模型(HMM)是用于执行此实验的识别模型。所使用的特征提取技术是MEL频率CEPSTRUM系数(MFCC),线性预测编码(LPC),感知线性预测(PLP),MEL SPECTRUM(MELSPEC),FILLE BANK(FBANK)。已经考虑了三种不同的噪声水平来测试数据。这些包括随机噪声,风扇噪声和实时环境中的随机噪声。这样做是为了分析可用于实时应用程序的最佳环境。此外,考虑到不同采样率的五种不同类型的常用比特率,以找出最佳的比特率。
translated by 谷歌翻译
研究界在发现心理健康问题及其与社交媒体分析的相关原因方面见证了大幅增长。我们介绍了一个新的数据集,用于在社交媒体帖子(CAM)中对心理健康问题的因果分析。我们对因果分析的贡献是两方面:因果解释和因果分类。我们为这项因果分析任务引入了注释模式。我们证明了模式在两个不同数据集上的功效:(i)爬行和注释3155个Reddit帖子和(ii)重新通知了1896年实例的公开可用的SDCNL数据集,以进行可解释的因果分析。我们进一步将它们组合到CAMS数据集中,并将此资源与关联的源代码公开可用:https://github.com/drmuskangarg/cams。我们提出了从CAMS数据集中学到的模型的实验结果,并证明了经典的逻辑回归模型以4.9 \%的精度优于下一个最佳(CNN-LSTM)模型。
translated by 谷歌翻译
在线用户的精神障碍使用社交媒体帖子确定。该域名的主要挑战是利用在社交媒体平台上使用用户生成文本的道德许可。学术RE搜索者确定了心理健康分类的不足和未标记数据的问题。要处理此问题,我们已经研究了数据增强技术对域特定用户生成的心理健康分类文本的影响。在现有的良好建立的数据增强技术中,我们已经识别了简单的数据增强(EDA),条件BERT和后退转换(BT)作为生成额外文本以提高分类器性能的潜在技术。此外,采用了三种不同分类器随机林(RF),支持向量机(SVM)和逻辑回归(LR)来分析数据增强对两个公共可用的社交媒体数据集的影响。实验心理结果显示在增强数据上培训时对分类器性能的显着改进。
translated by 谷歌翻译
在锁定时期,由于第三名封闭,越来越多的人对社交媒体平台表达了自己的感受,学术研究人员目睹了心理保健和社交媒体帖子之间的密切联系。短时间内的压力可能会导致临床凹陷,而普遍抑郁症的长期特征可能会以自杀念头作为可能的结果来威胁生命。对自杀案件数量增加的越来越关注是因为它是过早但可预防死亡的主要原因之一。最近的研究表明,采矿社交媒体数据有助于量化有风险的用户的自杀趋势。这种潜在的手稿阐明了心理保健的分类法,并强调了最近的一些尝试,以研究量化社交媒体数据上的自杀趋势的潜力。该手稿介绍了社交媒体数据和处理功能向量表示的异质特征的分类。旨在确定机器学习开发(ML)和基于深度学习(DL)模型的新研究方向和进步,对与压力,抑郁症相关的77多个潜在的研究文章进行了定量合成和定性审查从2013年到2021年的自杀风险。
translated by 谷歌翻译
Learning policies from fixed offline datasets is a key challenge to scale up reinforcement learning (RL) algorithms towards practical applications. This is often because off-policy RL algorithms suffer from distributional shift, due to mismatch between dataset and the target policy, leading to high variance and over-estimation of value functions. In this work, we propose variance regularization for offline RL algorithms, using stationary distribution corrections. We show that by using Fenchel duality, we can avoid double sampling issues for computing the gradient of the variance regularizer. The proposed algorithm for offline variance regularization (OVAR) can be used to augment any existing offline policy optimization algorithms. We show that the regularizer leads to a lower bound to the offline policy optimization objective, which can help avoid over-estimation errors, and explains the benefits of our approach across a range of continuous control domains when compared to existing state-of-the-art algorithms.
translated by 谷歌翻译
In the process of materials discovery, chemists currently need to perform many laborious, time-consuming, and often dangerous lab experiments. To accelerate this process, we propose a framework for robots to assist chemists by performing lab experiments autonomously. The solution allows a general-purpose robot to perform diverse chemistry experiments and efficiently make use of available lab tools. Our system can load high-level descriptions of chemistry experiments, perceive a dynamic workspace, and autonomously plan the required actions and motions to perform the given chemistry experiments with common tools found in the existing lab environment. Our architecture uses a modified PDDLStream solver for integrated task and constrained motion planning, which generates plans and motions that are guaranteed to be safe by preventing collisions and spillage. We present a modular framework that can scale to many different experiments, actions, and lab tools. In this work, we demonstrate the utility of our framework on three pouring skills and two foundational chemical experiments for materials synthesis: solubility and recrystallization. More experiments and updated evaluations can be found at https://ac-rad.github.io/arc-icra2023.
translated by 谷歌翻译
This paper proposes an easy-to-compute upper bound for the overlap index between two probability distributions without requiring any knowledge of the distribution models. The computation of our bound is time-efficient and memory-efficient and only requires finite samples. The proposed bound shows its value in one-class classification and domain shift analysis. Specifically, in one-class classification, we build a novel one-class classifier by converting the bound into a confidence score function. Unlike most one-class classifiers, the training process is not needed for our classifier. Additionally, the experimental results show that our classifier \textcolor{\colorname}{can be accurate with} only a small number of in-class samples and outperforms many state-of-the-art methods on various datasets in different one-class classification scenarios. In domain shift analysis, we propose a theorem based on our bound. The theorem is useful in detecting the existence of domain shift and inferring data information. The detection and inference processes are both computation-efficient and memory-efficient. Our work shows significant promise toward broadening the applications of overlap-based metrics.
translated by 谷歌翻译
We propose a framework in which multiple entities collaborate to build a machine learning model while preserving privacy of their data. The approach utilizes feature embeddings from shared/per-entity feature extractors transforming data into a feature space for cooperation between entities. We propose two specific methods and compare them with a baseline method. In Shared Feature Extractor (SFE) Learning, the entities use a shared feature extractor to compute feature embeddings of samples. In Locally Trained Feature Extractor (LTFE) Learning, each entity uses a separate feature extractor and models are trained using concatenated features from all entities. As a baseline, in Cooperatively Trained Feature Extractor (CTFE) Learning, the entities train models by sharing raw data. Secure multi-party algorithms are utilized to train models without revealing data or features in plain text. We investigate the trade-offs among SFE, LTFE, and CTFE in regard to performance, privacy leakage (using an off-the-shelf membership inference attack), and computational cost. LTFE provides the most privacy, followed by SFE, and then CTFE. Computational cost is lowest for SFE and the relative speed of CTFE and LTFE depends on network architecture. CTFE and LTFE provide the best accuracy. We use MNIST, a synthetic dataset, and a credit card fraud detection dataset for evaluations.
translated by 谷歌翻译
Exploratory data analytics (EDA) is a sequential decision making process where analysts choose subsequent queries that might lead to some interesting insights based on the previous queries and corresponding results. Data processing systems often execute the queries on samples to produce results with low latency. Different downsampling strategy preserves different statistics of the data and have different magnitude of latency reductions. The optimum choice of sampling strategy often depends on the particular context of the analysis flow and the hidden intent of the analyst. In this paper, we are the first to consider the impact of sampling in interactive data exploration settings as they introduce approximation errors. We propose a Deep Reinforcement Learning (DRL) based framework which can optimize the sample selection in order to keep the analysis and insight generation flow intact. Evaluations with 3 real datasets show that our technique can preserve the original insight generation flow while improving the interaction latency, compared to baseline methods.
translated by 谷歌翻译